Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Ahmed Attayibat, ${ }^{a}$ Smaail Radi, ${ }^{\text {a }}$ Abdelkrim Ramdani, ${ }^{\text {a }}$ Driss Eddike, ${ }^{\text {b }}$ Monique Tillard ${ }^{\text {c }}$ and Claude Belin ${ }^{\text {c* }}$

${ }^{\text {a }}$ Laboratory of Physical-Organic Chemistry, Department of Chemistry, Faculty of Sciences, University Mohammed The First, BP 524, 60000 Oujda, Morocco, ${ }^{\text {b }}$ Laboratory of Inorganic Solid Chemistry, Department of Chemistry, Faculty of Sciences, University Mohammed The First, BP 524, 60000 Oujda, Morocco, and 'Laboratoire des Agrégats Moléculaires et Matériaux Inorganiques, UMR 5072 CC15, Université de Montpellier II, Sciences et Techniques du Languedoc, 2 Place Eugène Bataillon, 34095 Montpellier Cédex 5, France

Correspondence e-mail:
eddike@sciences.univ-oujda.ac.ma

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.049$
$w R$ factor $=0.125$
Data-to-parameter ratio $=14.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2-($1^{\prime}, 5^{\prime}, 5$-Trimethyl-3,3'-bi-1H-pyrazol-1-yl)ethanol

In the crystal structure of the title compound, $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}$, the two pyrazole rings are coplanar, as indicated by both the dihedral angle of $0.8(1)^{\circ}$ between their mean planes and the $\mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{N}$ torsion angle of 179.81 (13) ${ }^{\circ}$.

Comment

Pyrazole derivatives are of particular interest in coordination chemistry. Several pyrazole-containing compounds have shown ability to complex transition metal ions (Jeong et al., 2003; Bol et al., 1997; Mary et al., 1993; Elguero et al., 1980). However, the literature reports few applications of C, C bipyrazole derivatives in coordination chemistry. In this paper, we have synthesized and determined the X-ray crystal structure of a new C, C-bipyrazole ligand, ($1^{\prime}, 5^{\prime}, 5$-trimethyl-3,3'-bi$1 H$-pyrazol-1-yl)ethanol, (II), functionalized with a mobile chain containing a donor heteroatom. Ligand (II) was prepared by reduction of ($1^{\prime}, 5^{\prime}, 5$-trimethyl-3, 3^{\prime}-bi- $1 H$-pyrazol-1-yl)ethyl acetate, (I), by LiAlH_{4}; it has two pyrazole $\mathrm{N} s p^{2}$ atoms and one O atom at the end of a flexible side chain.

The pyrazole-to-methyl bond lengths $\mathrm{C} 11-\mathrm{C} 12$ and $\mathrm{C} 5-$ C6 (Table 1) are very close to those observed in 1-(p-nitro-phenyl)-3-methyl-4-bromopyrazole (Lapasset \& Falgueirettes, 1972). The N1-N2 and N3-N4 bond lengths are within the values $[1.2348(8)-1.385(4) \AA$] reported for $\mathrm{N}-\mathrm{N}$ bonds in pyrazole rings (Krishna et al., 1999).

The atoms of the pyrazole rings do not deviate from their least-squares mean planes by more than 0.0018 (9) \AA (atoms N 1 and C 8$)$. These deviations may be compared with that ($0.012 \AA$ for C6) in 1-(p-nitrophenyl)-3-methyl-4-bromopyrazole (Lapasset \& Falgueirettes, 1972).

With a $\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{N} 3$ torsion angle of $179.81(13)^{\circ}$, the two heterocycles are coplanar and their N atoms are trans with respect to the $\mathrm{C} 8-\mathrm{C} 9$ bond. This configuration has already been observed in the 3,3'-bipyrazole (Monge et al., 1994). Electron delocalization and conjugation in the pyrazole π systems may occur between the two rings. This is indicated by the shortening of the $\mathrm{C} 8-\mathrm{C} 9$ bond length to 1.463 (2) \AA [1.4586 \AA in the $3,3^{\prime}$-bipyrazole (Monge et al., 1994)] and also by the small dihedral angle of $0.8(1)^{\circ}$ between the pyrazole mean planes.

The low steric hindrance between substituents at positions 1 (or 1^{\prime}) and 5 (or 5^{\prime}) results in small values of 2.7 (2) and $0.4(2)^{\circ}$, respectively, for the $\mathrm{C} 13-\mathrm{N} 4-\mathrm{C} 11-\mathrm{C} 12$ and $\mathrm{C} 6-$ $\mathrm{C} 5-\mathrm{N} 2-\mathrm{C} 3$ torsion angles.

In the crystal structure, molecules of (II) form hydrogenbonded centrosymmetric dimers through $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ bonds (Table 2).

Experimental

Bipyrazole (I) ($0.63 \mathrm{~g}, 2.40 \mathrm{mmol}$) dissolved in tetrahydrofuran (THF, 20 ml) was added to a stirred suspension of LiAlH_{4} (200 mg , 5.26 mmol) in THF (10 ml) cooled to 273 K . The mixture was stirred under reflux for 2 h . After cooling to 273 K , the excess hydride was destroyed by slow addition of water (0.2 ml), aqueous sodium hydroxide $(15 \%, 0.2 \mathrm{ml})$ and then water $(0.6 \mathrm{ml})$. The stirring was continued for 2 h , the solid material filtered off and the residue washed with hot THF. The filtrate and THF washings were concentrated under reduced pressure and the resulting solid was recrystallized from THF as colourless crystals of (II) suitable for X-ray analysis (yield 72%; m.p. 451-453 K).

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}$

$$
\begin{aligned}
V & =549.2(1) \AA^{3} \\
Z & =2
\end{aligned}
$$

$D_{x}=1.332 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Parallelepiped, colourless
$0.35 \times 0.30 \times 0.12 \mathrm{~mm}$
$\beta=82.18$ (1) ${ }^{\circ}$
$\gamma=63.75(1)^{\circ}$

Data collection

Oxford Diffraction Xcalibur CCD diffractometer
ω scans
Absorption correction: none
7672 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0485 P)^{2}\right. \\
& +0.262 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.20 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.27 \mathrm{e} \AA^{-3}
\end{aligned}
$$

2185 independent reflections
1797 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.077$
$\theta_{\text {max }}=26.1^{\circ}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.125$
$S=1.06$
2185 reflections
152 parameters
independent and constrained
refinement

Figure 1
View of (II). Displacement ellipsoids for the non-H atoms are drawn at the 30% probability level.

Table 2
Hydrogen-bond geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}-\mathrm{H} \cdots \mathrm{N} 1^{\mathrm{i}}$	$0.87(3)$	$2.10(3)$	$2.9441(19)$	$162(2)$
Symmetry code: (i) $-x,-y+1,-z+1$.				

Except for the hydroxy H atom, which was located in a Fourier difference map and whose position and isotropic displacement parameter were freely refined, all H atoms were placed in geometrically idealized positions ($\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$) and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl groups and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for other H atoms.

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2004); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Version 1.08; Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Bol, J. E., Gonesh, G., Driessen, W. L., Goubitz, K. \& Reedijk, J. (1997). Heterocycles, 45, 1477-1491.
Elguero, J., Espada, M., Ramdani, A. \& Tarrago, G. (1980). J. Heterocycl. Chem. 17, 137-142.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Jeong, J. H., Park, Y. D. \& Roh, S. G. (2003). Bull. Korean Chem. Soc. 24, 521523.

Krishna, R., Velmurugan, D., Murugesan, R., Shanmuga Sundaram, M. \& Raghunathan, R. (1999). Acta Cryst. C55, 1676-1677.
Lapasset, J. \& Falgueirettes, J. (1972). Acta Cryst. B28, 791-796.
Mary, F., Marzin, C., Salhi, S. \& Tarrago, G. (1993). Supramol. Chem. 3, 57-61
Monge, M. A., Puebla, E. J., Elguero, J., Toiron, C., Meutermans, W. \& Sobrados, I. (1994). Spectrochim. Acta. Part A, 50, 121-734.
Oxford Diffraction (2004). CrysAlis CCD and CrysAlis RED. Versions 171. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen. Germany.

[^0]: © 2006 International Union of Crystallography All rights reserved

